Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
One Health initiatives have advanced zoonotic disease management by recognizing the interconnectedness of three sectors of governance (human, ecosystem, and animal) and by identifying options that can improve full‐system health. Although One Health has had many successes, its full realization may be inhibited by a lack of strategies to overcome simultaneous impediments in decision making and governance. Decision impediments that hinder management may include uncertainty, risk, resource limitations, and trade‐offs among objectives. Governance impediments arise from disparities in costs and benefits of disease management among sectors. Tools and strategies developed from decision science, collaboration, and negotiation theory can help articulate and overcome coinciding decision and governance impediments and enhance multisectoral One Health initiatives. In cases where collaboration and negotiation are insufficient to address disparities in cross‐sector costs and benefits, altering incentive structures might improve disease‐specific outcomes and improve the realization of One Health.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Wild waterbirds, and especially wild waterfowl, are considered to be a reservoir for avian influenza viruses, with transmission likely occurring at the agricultural-wildlife interface. In the past few decades, avian influenza has repeatedly emerged in China along the East Asian-Australasian Flyway (EAAF), where extensive habitat conversion has occurred. Rapid environmental changes in the EAAF, especially distributional changes in rice paddy agriculture, have the potential to affect both the movements of wild migratory birds and the likelihood of spillover at the agricultural-wildlife interface. To begin to understand the potential implications such changes may have on waterfowl and disease transmission risk, we created dynamic Brownian Bridge Movement Models (dBBMM) based on waterfowl telemetry data. We used these dBBMM models to create hypothetical scenarios that would predict likely changes in waterfowl distribution relative to recent changes in rice distribution quantified through remote sensing. Our models examined a range of responses in which increased availability of rice paddies would drive increased use by waterfowl and decreased availability would result in decreased use, predicted from empirical data. Results from our scenarios suggested that in southeast China, relatively small decreases in rice agriculture could lead to dramatic loss of stopover habitat, and in northeast China, increases in rice paddies should provide new areas that can be used by waterfowl. Finally, we explored the implications of how such scenarios of changing waterfowl distribution may affect the potential for avian influenza transmission. Our results provide advance understanding of changing disease transmission threats by incorporating real-world data that predicts differences in habitat utilization by migratory birds over time.more » « less
-
Abstract Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community‐level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community‐weighted means of these traits were also correlated with community‐level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait‐based ecology into the framework of diversity–disease relationship, and provide new insights for HPAI prediction and prevention.more » « less
-
Abstract Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low‐pathogenicity influenza viruses that ultimately cause high‐pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large‐scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A‐positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors.more » « less
An official website of the United States government
